

Published on The National Law Review https://natlawreview.com

 The Beauty and the Terror of Agile Software Development

Article By:

Garrett T. Galvin

Alexander J. Civetta

“This vendor is great, they use agile!” Clients often come to counsel with this mindset when they are
buying development services, where “agile” is a label that implies a better, more streamlined
approach. But while an agile approach offers a variety of benefits versus traditional, “build to spec”
software development, it necessarily shifts certain contractual risks to the client, which can result in
cost creep and disputes.

What Is “Agile” and Why Should Lawyers Care?

“Agile” is an umbrella term for software development frameworks that emphasize collaboration and
adaptation, versus the “waterfall” or “build to spec” methodology of a traditional software
development framework. Instead of moving through the various stages of development
(specifications, design, coding, testing, and implementation) sequentially, development is broken out
into a series of sub-projects called “iterations” or “sprints.” Each sprint lasts a short time (typically
two to four weeks) and should result in a fully functional, deployable piece of the overall project. Each
sprint contains the same elements as the waterfall methodology, except that the designing, coding,
and testing of the sprint take place largely simultaneously. The resulting process is much more
flexible than a traditional waterfall process, but relies heavily on client involvement and a well-
facilitated process in order to be successful.[1]

Waterfall development:

 1 / 4

https://natlawreview.com

Agile development:

Agile Contract Challenges

By its nature, an agile process is iterative and puts more responsibility on a client than a traditional
approach. Here are some of the key contracting issues that will present themselves in the agile
context:

Uncertainty

In agile development, final specifications are not agreed upon up-front; in some cases, the very
nature of the final product itself is not specified at the outset of the project. Instead, agile
development will focus on the high-level description of what the client wants the final product to
accomplish, and will then establish an iterative process of development and client testing and
refinement to get there. At the time of signing the contract, the client will not know (and will not be
able to hold the developer to) exactly what the end result will be.

Timing & Pricing

 2 / 4

Because the specifications are not agreed upon up front, time-to-completion and pricing can be
moving targets. Clients often want certainty as to the cost and development time involved in a project,
but developers do not want to commit to a fixed price or timeline when there is no final specification
against which to estimate.

Rights & Obligations

The collaborative nature of the agile framework also means that the rights and obligations of the
developer and client can become blurred. Because the client is heavily involved in the review,
approval, and re-scoping of the agile project as it progresses, there is increased opportunity for the
developer to blame the client for scope creep, changing priorities, or delays. This can limit a client’s
ability to seek remedies against the developer.

Best Practices

Prepare for the commitment

By its nature, agile development involves a lot more of a client’s internal employee time than
traditional software development: the client must participate in regular meetings and product testing,
and is responsible for re-evaluating its own goals and needs in order to adequately direct the agile
team. Ideally, the client will allocate an internal resource who has experience handling agile
development matters to direct the project (usually called the “product owner”) to ensure that both
client and developer resources are being deployed efficiently.

Use the right starting point

Most development contract templates or master services agreements (MSAs) are tailored towards
the traditional waterfall development structure, with sequential development phases, longer times
between deliverables, and project requirements that are detailed up-front with either a fixed price or a
series of phased estimates. Instead, clients should use an MSA, and statements of work underneath
the MSA, or SOWs, that are purpose-built to handle an agile development process. As we describe
below, a purpose-built agile development contract should be more process-oriented than a traditional
MSA/SOW combination, and should include definitions of nomenclature and provisions that
specifically mitigate some of the risks of agile development.

Know (and define!) the nomenclature

Agile comes in many flavors and involves a lot of jargon, but it is critical to stick to the core
contracting principle of defining all key terms within the four corners of the contract. Documents that
come from an agile developer (particularly SOWs) may use jargon like “weekly stand-up,” “scrum
master” and “backlog.” While some of these terms have widely accepted definitions, specifically
defining them within your contract is critical for avoiding ambiguity and disputes.

Focus on mitigating the specific contracting challenges presented by agile development.

For example:

To mitigate the risk that the iterations do not work together or as expected, the MSA should
include a warranty that each iteration will work with all other iterations, that the final product
will conform to expectations set out in each SOW, and that the iterations will be designed to

 3 / 4

advance the overall project vision defined in the SOW.

The client should be able to terminate the contract and take all work product for any or no
reason at the conclusion of any iteration. Cancellation fees, if any, should be nominal
because the narrow focus and short time frame of each iteration means that the development
teams should be leanly staffed and easily able to transition to new projects.

Each iteration should still be delivered to, and owned by, the client at the conclusion of each
sprint, and in the event of termination, the developer should commit to spending additional
time training the client in how to finish the deliverable at the developer’s then-current
consulting rates.

Rigorously define your process

A good agile contract is ultimately a process-oriented document because the substance of the
development is continually iterated upon and redefined. It is unwieldy to execute a new SOW with
specifications for each sprint; instead, SOWs can define each high-level goal, and establish detailed
processes by which development will take place. These details should include specific meeting
schedules, sprint timing, the process for reviewing and defining sprint scope, testing procedures,
client and developer responsibilities, and team roles. If possible, a price-per-iteration pricing
structure, detailed in the MSA, can increase predictability of the overall cost of the project, as long as
the client has an experienced person involved in the process who can manage the number and
scope of iterations.

Agile presents a great alternative to traditional development in the right circumstances, but it is full of
traps for the unwary. Focusing on the key challenges and working with experienced agile team
leaders and legal practitioners can help maximize your chances of success.

Endnotes

[1] https://www.agilealliance.org/agile101/ and https://www.agilealliance.org/agile101/agile-glossary/

©1994-2025 Mintz, Levin, Cohn, Ferris, Glovsky and Popeo, P.C. All Rights Reserved.

National Law Review, Volume XI, Number 83

Source URL:https://natlawreview.com/article/beauty-and-terror-agile-software-development

Page 4 of 4

Powered by TCPDF (www.tcpdf.org)

 4 / 4

https://www.agilealliance.org/agile101/
https://www.agilealliance.org/agile101/agile-glossary/
https://natlawreview.com/article/beauty-and-terror-agile-software-development
http://www.tcpdf.org

